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Abstract

Unified inelastic strain theories have been developed to characterize nonlinear
material response with different physical-phenomena bases than previously used
'classical' treatments of plastic and creep strains. An enhanced understanding of
these plasticity theories and their applications has been developed by the
comparison of their resulting stress/strain response when applied to a titanium
matrix composite subjected to thermal and mechanical Ioadings. Various baseline
thermal, mechanical, and thermomechanical load scenarios were chosen to
demonstrate the various features of the unified inelastic strain and classical
constitutive theories. The basic underlying physical phenomena, numerical
efficiencies and results from the scenarios are discussed for both theories.
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Introduction

Titanium matrix composites will be exposed to such extreme thermal and
mechanical load conditions that the matrix material will experience both plastic and
time dependent deformation. Accurate representation of this nonlinear material
behavior is essential for realistic determination of stress/strain response and life
predictions. To model the matrix behavior in these extreme thermal and
mechanical conditions, a unified inelastic strain theory has been employed in an
attempt to describe the material's response more accurately than can be done with
a 'classical' treatment of plastic and creep strains. The refined accuracy of unified
theory is due to additional physical interpretations not found in classical theories.
The resulting stress/strain response from the unified strain theory was compared
against classical theory results in order to evaluate the performance of these two
theories in titanium aluminide matrix composite applications. The response was
determined from a commonly assumed axisymmetric composite geometry with load
conditions representative of those found in laboratory conditions. The comparison
also considered similarities and differences in theoretical derivation.

Historically, classical plasticity theories date back to 1864 when Tresca
developed a yield criterion. St. Venant, Von Mises, Prandel, Reuss and others later
enhanced the description of classical plasticity [1]. The physical phenomena of
creep and associated descriptions of dislocation movement were recognized in the
1950's [2]. The 1970's marked an increase in numerical applications of the elastic-
plastic-creep theories with the advent of finite element analysis [3]. The unified
inelastic strain concept used in this study was based on the Bodner/Partom
relationships, published in 1975 [4], developed to characterize strain rate
dependent materials. Later, Stouffer and Ramaswamy [5,6] employed a similar
form of the unified strain theory with the addition of 'back stress' to capture
directional hardening and strain recovery phenomena at room and elevated
temperatures. This current variety of unified strain theory was implemented into the
finite element package ADINA by Sherwood [7]. The present paper compares
Sherwood's form of unified theory with the classical elastic-plastic-creep derivation

currently available with ADINA. •

Theoretical Review

The basic equations of the classical and unified theories are reviewed in this
section. Some major assumptions and rules to be reviewed include the
decomposition of total strains, a Von-Mises yield criterion, flow rules and inelastic-
strain evolution equations. Additional details of the unified strain theory are
presented by Stouffer and Ramamamy [5,6]. The description of the implementation
of the classical elastic-plastic-creep model in ADINA is given by Bathe [8,9].
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The first assumption of a unified constitutive theory is that the total strain, Etot,

can be decomposed into elastic, Eel, thermal, Eth, and inelastic strains, ¢in. Thus,
the s{rain compatibility equations is written as "

Etot el _ij "_j +r_j h + . eq.(la)

The classical model further decomposes the inelastic strains into plastic, EPI, and

creep, Ecr ,components such that the strain compatibility equations become

E,I_t : F..i_I "4" Elh + Epl + _r. eq. (1b)

This uncoupling of the inelastic strains is somewhat physically unrealistic, as it is
experimentally difficult to isolate plastic and time-dependent motion of dislocations.

The description of plastic deformation and directions of plastic flow in
classical theory uses the Von-Mises yield criterion as given by

F = _(sij - (:zij)(sij - oqj) - k2 = O, eq. (2)

where F is the yield function, sij are components of the deviatoric stress, oqj are
components of directional hardening, and k is the uniaxial yield surface.

Plastic flow occurs when the stress state intercepts the yield surface, F, and

loading continues outward and normal to the surface. The resulting direction of
incremental plastic flow coincides with the outward normal to the yield surface.
Thus, the classical plastic flow rule is written as

_=_ ai:

aoij, eq. (3)

where _. is a scaling factor. For the Von Mises yield surface, the flow rule reduces
to

.pl

_i = X 3(sij - mj). eq. (4a)

In contrast to the classical theory, the unified strain theory has no yield
criterion, however inelastic flow rate is assumed as

= (s,i- eq. (4b)

where X is the scaling factor and _ij are components of back stress. Thus, the

direction of incremental inelastic strain is parallel to sij - £_ij.
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The classical theory defines an additional flow rule to describe the direction
and magnitude of the incremental creep strain as

I_i_r = p. (Sij- Oqj), eq. (4c)

where p. is a scaling factor.

Both theories describe the evolution of inelastic strain in a one-dimensional

or an effective-strain sense. The classical evolution equation for differential
isothermal effective plastic strain is described with an effective stress and a
hardening factor H:

Egff = _eff, eq. (5a)

where ceff = 3_2=_/3(sij)(sij)/2,

and H is a function of the elastic and plastic moduli. Addition thermal differential
terms of the elastic and plastic moduli are not shown here for simplicity. For this

analysis, the classical model assumes isotropic hardening, thus (zij=0. This
classical evolution equation for plastic strain is derived from empirical relationships
within stress/strain behavior with little regard to the physics governing hardening
behavior.

With a more physical basis than the classical derivations, inelastic-strain
evolution equations for unified theory describe the kinematics of slip planes in the
presence of dislocation pile-ups. The inelastic-strain evolution equation takes the
form

•io ._t'._7=_2.]
_eff = Do exp [-2--L{3y-_-;;} , eq. (5b)

where 3K2 = 3(sij - .Qij)(sij- .Qij)/2.

DO is a limiting strain rate, and Z is the drag stress. The drag stress accounts for
temperature-dependent isotropic hardening and evolves with plastic work. For this
study, the drag stress remains constant with respect to plastic work and is set to its
initial isothermal.value of Z0. The evolution of back stress is given as

_,j- f3_;ij "t'}3Sij + fl_:i_ I "2f1( _ij )l_ienff
._'2sat eq. (5c)

where fl and f3 are material constants. This back stress accounts for kinematric

hardening. The saturation value for the back stress, _sat, is a time and temperature
'clependent limiting value of back stress evolution. The saturated back stress
evolution equation is written as
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m,.

_stat =" Qcr), eq. (6a)

where B, r and _cr are material constants and c 0 is a normalization factor.

The equation for the classical creep model is assumed as

cr
off = ao oaef}{t a2 + a3t a4 + a5t a6} exp [a-Z]

e, eq. 6b

where ao, al, a2, a3, a4, a5, a6 and a7 are material constants and e is the current

temperature in degrees Kelvin. Within this creep model, the exponent term for the
temperature dependence is physically based on the activation energy of
dislocation motion. The remaining constants are determined from best fit of
experimental results, with little physical basis.

Summarizing the constitutive equations for the two theories, the classical
model contains 13 material constants, while the unified model contains 14 material
constants. Unified strain theories contain additional physical basis, such as the
coupling of plastic and time-dependent strains and an elegant form for the
kinematics of inelastic strain as prescribed by dislocation motion. Both models
were incorporated into the finite element package ADINA. The classical theory is
part of the standard ADINA software package, while the unified strain model has
been implemented in the form of user subroutines by Sherwood [7].

Comoosite Modeling and Material Pro0erties

The axisymmetric representation of unidirectional silicon carbide fibers
reinforcing a titanium aluminide matrix comprised the composite model.
Preliminary results from longitudinal Ioadings of unidirectional composites with a
more complex three-dimensional unit cell model revealed a stress state which was
essentially axisymmetric. Thus, the axisymmetric geometry was quite suitable for
this analysis. The fiber volume content was 0.35 which is typical of many currently
fabricated titanium aluminide composites. Four 8-noded axisymmetric elements
represented the fiber and eight elements modeled the matrix, as shown in Figure 1.
The boundary conditions shown were designed to give zero radial/axial shear
stress throughout the composite, uniform axial strain and zero radial stress at the
outer radius of the matrix (rmax). The matrix stress was investigated at two critical
locations - at the fiber-matrix interface (pt A) and at the outer radius of the matrix (pt
B).
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Figure 1 Axisymmetric Representation of the Composite.

Uniaxial material properties of the Ti-24AI-11Nb matrix were obtained from
fiberless material processed in the same manner as the composite. The process
consisted of plasma spraying fiberless foils, laying up the foils in panels and hot
isostatically pressing the panels [10]. This processing technique was selected to
closely match matrix-material texture and microstructure as found in the
consolidated composite. These panels were experimentally tested at a variety of
temperatures to obtain the uniaxial stress/strain response and coefficients of
thermal expansion.

A bilinear stress/strain response, with the associated material constants for
the Ti-24AI-11Nb matrix given in Table 1, was assumed for the classical model.
Material properties for the unified model, given in Table 2, were determined from
the same Ti-24AI-11Nb stress/strain response as used in the classical model. The
creep constants are representative of bulk Ti-24AI-11Nb, as the constants were
derived from a limited amount of creep data of a forged plate rather than of the
plasma sprayed stock. For consistency, both constitutive theories determined their
own material constants from the same creep response data. The fiber response
was assumed to be linear elastic, with material constants givenin Table 3.
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Table 1

Ti-24AI-11Nb Material Constants for Classical Model [10]

Temperature (°C) Elastic Modulus

(GPa)

1_= 0.3

Yield Strength
(MPa) ..

Plastic Modulus

(GPa)

Secant CTE

(10-6re)
Tref = 950 °C

21.0 94.0 604.0 1.130 t2.19
93.0 92.0 572.0 0.700 12.39

204.0 91.0 498.0 0.719 12.77
316.0 89.0 447.8 0.692 13.24
427.0 79.0 421.0 0.415 13.79
538.0 72.5 379.5 1,360 14.43
649.0 49.5 351.0 0,479 15.15
760.0 30.5 248.5 0.584 15.95
871.0 16.0 155.0 0.217 16.84
982.0 12.1 40.0 1.180 17.84

Creep Constants for Ea. (6b)

ao = 1.123x10 "4 a1=2.4018 a2=0.5746
a3 =0 a4 = 0 a5 = 0
a6 = 0 a7 = 14195 (Units: MPa, K, s)

Table 2
o

Ti-24AI-11Nb Material Constants for Unified Strain Model [7]

T('_C)

CTE

(10"6/C ° )
Tref =
950 °C

DO = 1 .xl 04, _ = 0.3

Z0 E (GPa)

21. 12.31 1.30 484. 94.065
93. 12.35 _ 1.30 484. 91.328

204. 12.39 1.25 491. 88.817
316. 12.71 1.12 517. 89.328
427. 13.25 1.00 551. 73.165
538. 13.99 0.87 970. 70.333

649. 14.94 0.70 1649. 44.035
760. 16.11 0.52 4384. 25.012
871. 17.48 0.30 49012. 18.953

982. 19.05 0.15 5.0X106 18.000

Creed Constants for Ea. (6a) at 650 °C

= 4.55 xl0 "8

_hi = 351.00 MPa

r= 2.0853

_low = 100.0 MPa

fl (103) I

f3 _sat
(MPa)

144.38 ' 0.7926 317.33
65.317 0.7800 290.00
36.437 0.7665 251.33
55.000 0.7740 227.33
68.750 0.7680 218.00
78.385 0.6572 186.67
88.000 - 0.5000 142.67
17.187 0.3500 82.00
7.562 0.0010 16.67
4.000 0.0001 12,00

E_cr = 29.33 MPa
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Table 3

SCS-6 Material Constants for Linear Elastic Model [10]

E = 414.0 GPa, _ = 0.3

Temperature (°C) Secant CTE (10-6/°C), Tref = 950 °C

20.0 4.65
101.0 4.75
203.0 4.91
299.0 5.04
400.0 5.18
500.0 5.32
598.0 5.39
702.0 5.46
800.0. 5.64
900.0 5.79
1001.0 5.67

The axisymmetric representation of the composite was subjected to a
number of typical thermal and mechanical load scenarios as found in the
laboratory. The four load cases considered were initial cooling following the
consolidation process, out-of-phase thermal mechanical fatigue, sustained loading
at 650°C and residual stress "shake-down" during thermal cycling. Since the
unified-strain-theory material constants for creep were only determined for 650°C,
use of the classical transient-tehlperature creep model (eq.6b) and unified strain's
creep model (eq.6a) was restricted to the sustained load scenario. A comparison
of the CPU time usage for each scenario was conducted to evaluate the numerical
performance of the classical and unified-strain models.

Thermal Processing

Residual stress from processing effects the composite response during
subsequent thermal or mechanical loading. The state of residual stress due to
thermal processing was determined using both the classical and unified theories
for the matrix behavior. Since the creep constants at a variety of temperatures
were not available for the unified strain model, the thermal processing results were
determined in the absence of the classical and unified strain's creep models (a0 =0

and B=0).

The simulation of cooling after thermal processing considered an initial zero
.stress/strain state at 950°C (t0=0) followed by composite cooling to room
temperature in one hour, (t1=3600s) The predicted residual matrix stress state at



the fiber-matrix interface (pt. A) during the cooling process compared quite well for
both models, as illustrated in Figure 2. As a better measure of comparison, the
inela.stic strains were investigated and also revealed reasonable agreement,
illustrated in Figure 3. The initial growth of appreciable plastic strains occurred at
550°C for both models, thus demonstrating that the unified strain theory predicted
the same thermal elastic solution above 550°C as determined by the classical
theory. Below 550°C, the classical solution proceeded in such a manner that the
effective stress remained on the temperature dependent yield surface. A similar
'stress limiting' phenomenon occurred in the unified strain theory, as the back
stress reached its temperature dependent saturated value and remained in the
saturated state for the remaining segment of cooling.

The unified model's ability to characterize rate-dependent-loading effects
was demonstrated by conducting the residual stress scenario at three different
cooling rates: 36, 360 and 3600 seconds. The different cooling rates did effect the
resulting effective stress (_/3J2) and the state variable _/3K2, but not to a great

extent, as illustrated in Figure 4. This lack of significant strain-rate effect on matrix
response may be due to an inadequate amount of experimer_tal data which
characterized the strain-rate behavior of this material.

800 Io- radial stress
600 [-.-,_,,,_ _ _ axial stress

.i: tl "_l____ . o h0op stress

_, 200

r3 o ....

-200 _'. _._..=.-_ -'O_ I-- -- Unified Strain Model

_'_"_"_- I _ Classical Model
-400

0 200 400 600 800 1000

Temperature (°C)

Figure 2 Processing Induced Residual Matrix Stress Predictions at Fiber-Matrix
Interface (pt. A) for Unified Strain and Classical Models.
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Thermomechanical Loadine
T

An out-of-phase thermomechanical fatigue load was considered for
comparison of the two theories, since this combination of thermal and mechanical
loads was more adverse on the matrix material than other TMF Ioadings. The TMF
scenario, shown in Figure 5, began at the end of the thermal processing simulation
(t1=3600s). The composite was then heated to 650°C, followed by the application
of an aggregate axial load of 700 MPa. Within the finite element method the
aggregate load was appropriately distributed throughout the entire composite to
retain the uniform axial-strain condition. The temperature range of 150-650°C and
stress range of 70-700 MPa were the same as those previously considered in TMF
experiments conducted in the laboratory [11].

The resulting stress histories from both constitutive theories compared quite
well at the matrix/fiber interface (pt. A), as illustrated in Figure 6. Throughout the
entire loading scenario, the classical model did not exhibit fully-reversed yield
behavior, since the yield surface and the effective stress failed to intercept each
other at the peak load conditions. This was not expected, since it was hoped that
any reversed plasticity and subsequent work hardening would be better displayed
with the unified strain theory than with the classical theory. The unified theory
exhibited strain ratcheting, but not fully reversed plasticity, as illustrated by the axial
stress and mechanical strain response shown in Figure 7. The classical elastic-
plastic theory with the absence of time dependent behavior did not predict any
hysteresis or strain ratcheting, since stress levels remained in the elastic regime.
The stability of the observed strain ratcheting was not investigated for the limited
number of load cycles applied.

The stresses was also investigated at the outer radius of the matrix cylinder
(pt. B), which exhibited a large axial stress component, as illustrated in Figure 8.
Again, the stress state predicted by the two constitutive theories compared quite
well at this location. However, the classical results still did not predict any reversed
inelastic response. Instead, it was found that at 650°C the peak axial stress of 610
MPa exceeded the uniaxial yield strength of 540 MPa. In comparison, the peak
axial stress at the fiber-matrix interface was 440 MPa. Similar to the findings at the
fiber-matrix interface, the unified strain theory did predict axial strain ratcheting at
the outer radius of the matrix, as illustrated in Figure 9. In a physical sense, from
the larger axial stress at this location in the matrix (pt. B), accelerated damage
and/or fatigue crack initiation would be more likely than at the fiber-matrix interface
(pt. A).
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Figure 7 Axial Stress/Strain Response at Fiber-Matrix Interface (pt. A) during
Out-of-Phase TMF Loading.
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Figure 8 Predicted Matrix Stress Response at Outer Radius of Matrix (pt. B)
During Out-of-Phase TMF Loading.
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Time Oeoendent Res!_onse

This load scenario was designed to demonstrate the time dependent
response of the matrix predicted by both constitutive theories. The entire scenario
consisted of thermal processing, heating the composite to 650°C, and application
of a sustained axial load of 450 MPa for twenty hours. This load level and the hold
time were representative of expected conditions of actual sustained load
experiments conducted on composites. The load history shown in Figure 10 began
at the end of the thermal processing simulation (t1=3600 seconds).

The time dependent response was best demonstrated by the axial stress at
the outer radius of the matrix, as illustrated in Figure 11. Response from the two
constitutive theories compared quite well during the cool down, t0-tl, heating to
elevated temperature, tl-t2, and application of axial load, t2-t3. However, the two
theories did not predict the same amount of stress relaxation during the hold time.
This difference may be attributed to the lack of experimental creep data and the
different stress extrapolation schemes between the two models.
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Thermal Shakedown. ,

• ¢ .... •-- [ - . - - - •

Experimental investigations by James [12] have shown that the room
temperature residual stress in the composite ratchets down for repeated thermal
cycling between 65°C and 815°C, To analytically investigate this phenomenon,
the composite model was cooled from its consolidation temperature of 950 °C to
room temperature (25°C) and then subjected to 25 complete thermal cycles
between 25°C and 950°C. The effective stress response of the matrix at the fiber-
matrix interface (pt. A) for the classical and unified models are given Figure 12.
The classical model without a time dependent behavior (a0=0) does not predict the
experimentally observed reduction in room temperature residual stress due to
thermal cycling. However, the unified model shows a significant relaxation of
stress level with this subsequent cycling. Use of the creep equation (Eq. 6b) in the
classical theory may predict this 'shakedown' phenomenon, however the lack of
high temperature creep data for the matrix prohibited its accurate use.

700
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600 __ I Unified Strain Model ]1
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mm 400

•> 300
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Figure 12 Predicted Matrix Effective-Stress Ratcheting During Thermal Shake-
Down Loading.at Fiber-Matrix Interface (pt. A)

Computational Effioiency

The resulting CPU times for each analysis are compared to evaluate the
numerical performance of the two models and numerical implementation.
Numerical algorithms by Bathe [9] have made the classical model rather
computationally efficient, while the unified strain models are notoriously CPU
inefficient. The unified strain model's CPU inefficiency is due to the mathematical

.stiffness of its constitutive equations. By use of a relaxation factor and sub-
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incremental solution increments, the efficiency ratio of the unified strain model over
the classical model CPU usage has been reduced from an excessive factor of ten
to a .factor of roughly two to four times as summarized in Table 4. These results
were dependent on hardware and associated compiler software. Since the
numerical algorithms of the unified strain theory are still quite new, they are not
expected to perform as well.

Table 4

Compadson of CPU Usage

Load Case
Constitutive

Model
Number of
Solution

Increments

Number of
Sub-

Increments

CPU
Seconds

SUN*

CPU
seconds

IBM**

Residual
Stress

Unified 36 10 424.80 91.64
Strain

1 ..... 37.92

Classical 36 1 69.37 48.25

TMF Unified 200
Strain

Classical 200

10

4

1

2141.8

335.90

402.57

272.87

248.70

Creep Unified 260 10 1570
Strain

Classical 260 1 897.01

440.97

318.72

310.38

Shake- Unified 1836
down Strain

Classical 1836

10 3383.15

1159.25

* ADINA6.0 on suN-SPARC2, Model 4/75

** ADINA6.0 On IBM-RS/6000, Model 530
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Summary. and Conclusions
. _ 3 " ._ " t '

Using a unified strain theory to represent matrix behavior, matrix response
was obtained for an SCS-6 silicon carbide/titanium aluminide, Ti-24AI-11Nb

axisymmetric composite model subjected to a variety of thermal and mechanical
load scenarios. This response was compared with results obtained with 'classical'
elastic-plastic-creep theory representing the matrix behavior. In conducting this
investigation, the underlying physics and numerical efficiencies of the two theories
were compiled and presented with some revealing results.

Comparison of the development of the two theories revealed that the unified
strain derivation contained additional physical basis not found in the classical
theory. The coupling of plastic and time dependent strains into an inelastic strain is
viewed as more realistic, since separation of these two phenomena is
experimentally difficult. The inelastic-strain-rate equations of unified strain theory
are based on observations of the kinematics of dislocation movement, whereas

classical plastic-strain-rate are based on empirical constructs of elastic and plastic
response. The thermal term for the classical-creep-evolution equation was based
on a physical description of an the activation energy required for dislocation
movement.

Comparison of the results from both theories employed to represent the
matrix response of a composite show good correlation for the residual stress and
the TMF loading scenarios. The results obtained for the hold time scenario did not
compare as well, since the models extrapolated stress effects on creep response
by different methods. The unified model did predict some cooling-rate dependence
during the residual stress cool down and some strain ratcheting during the TMF
loading, which were not found in classical elastic-plastic theories in the absence of
time dependent behavior. The unified model also captured stress relaxation during
thermal shakedown simulations. With adequate amounts of creep data, accurate
use of classical creep equation may predict the strain ratcheting and/or stress
relaxation not found in the classical model results. In retrospect, it was no great
surprise that a good comparison of results was found, since both theories modeled
the matrix thermal and mechanical response quite well.

The resulting CPU times for each analysis were compared and used to
evaluate the numerical performance of the two models. The comparison revealed
that the unified inelastic strain theory was less computationally efficient by roughly
two to four times than the classical model. However, these results were highly
scattered depending on hardware and associated software. In addition, numerical
methods and implementation of the unified strain theory are still quite new and can
not be expected to perform as efficiently.

The chosen uniaxial geometry and load levels were too restrictive to display
the finer aspects of the unified strain theory. Such fine aspects include directional
hardening, reversed plasticity, and strain-rate effects. The unidirectional geometry
was inappropriate as the fiber dominated the majority of the axial response. The

load levels were too conservative as they represented Ioadings of an early
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generation of composite with an inherently higher population of processing defects
that could not withstand a more aggressive environment. For further analysis, a
matrix dominate geometry with a more aggressive environment may provide a
better basis for comparison of these two models.
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